
QCD phase diagram at large Nc

The standard lore: 

QCD Phase Diagram vs temperature, T, and quark chemical potential, μ

One transition, chiral = deconfined, “semicircle”

Large Nc: 

     Two transitions, chiral ≠ deconfinement 

     Not just a critical end point, but a new “quarkyonic” phase:

Confined, chirally symmetric baryons: massive, parity doubled.

Work exclusively in rotating arm approximation...

McLerran & RDP, 0706.2191, to appear in NPA.
     



 

The first semicircle

ρBaryon ↑

Cabibbo and Parisi ‘75: Exponential (Hagedorn) spectrum limiting temperature,
     or transition to new, “unconfined” phase.  One transition.

Punchline today: below for chiral transition, deconfinement splits off at finite μ.
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Phase diagram, ~ ‘06
Lattice, T ≠ 0, μ = 0: two possible transitions; one crossover, same T.   Karsch ’06

Remains crossover for μ ≠ 0?  Stephanov, Rajagopal, & Shuryak ‘98:  
     Critical end point where crossover turns into first order transition

T ↑

μ →



Experiment: freezeout line
Cleymans & Redlich ‘99: Line for chemical equilibriation at freezeout
     ~ semicircle.
N.B.: for T = 0, goes down to ~ nucleon mass.

μBaryon →

T ↑
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Experiment vs. Lattice

μquark →

Lattice “transition” appears above freezeout line?  Schmidt ‘07

N.B.: small change in Tc with  μ?

T ↑
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Lattice Tc , vs μ

Rather small change in Tc vs μ?  Depends where μc is at T = 0.  Fodor & Katz ‘06

T ↑

μquark →
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EoS of nuclear matter
Akmal, Panharipande, & Ravenhall ‘98: Equation of State for nuclear matter, T=0
     E/A = energy/nucleon.  Fits to various nuclear potentials

Anomalously small: binding energy of nuclear matter 15 MeV!
Calc’s reliable to ~ twice nuclear matter density.

E/A ↑

ρBaryon →
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Expansion in large Nc

‘t Hooft ’74: let Nc → ∞, with λ = g2 Nc fixed.

~ Nc2 gluons in adjoint representation, vs ~ Nc quarks in fundamental rep. ⇒ 

     large Nc  dominated by gluons (iff Nf = # quark flavors small)

“Double line” notation.  Useful even at small Nc (Yoshimasa Hidaka & RDP)



Large Nc : “planar” diagrams

~ g2 Nc = λ 

Planar diagram, ~ λ2 Non-planar diagram, ~ λ2 /Nc 
Suppressed by 1/Nc 



Quark loops suppressed at large Nc 

Quark loops are suppressed at large Nc if Nf , # quark flavors, is held fixed 

     Thus: limit of: large Nc , small  Nf 

Quarks introduced as external sources.  

Analogous to “quenched” approximation, expansion about Nf = 0. 

     Veneziano ‘78: take both Nc and Nf  large.  Even more difficult.

∼ g2
= λ ×

1

Nc



Form factors at large Nc 

< J(x)J(0) > ∼ Nc

J ~ (gauge invariant) mesonic current

Infinite # of planar diagrams for < J J >:

XX

XX X X

Confinement => sum over mesons, form factors ~ Nc1/2

< J(x)J(0) > ∼

∫
d4p eip·x

∑
n

< 0|J |n >
1

p2 + m2
n

< n|J |0 >

< J(x)J(0) > ∼ Nc ⇒ < 0|J |n >∼
√

Nc if mn ∼ 1



Mesons & glueballs free at Nc = ∞

With form factors ~ Nc1/2 , 3-meson couplings ~ 1/Nc1/2 ; 4-meson, ~ 1/Nc

For glueballs, 3-glueball couplings ~ 1/Nc , 4-glueball ~ 1/Nc2

Mesons and glueballs don’t interact at Nc = ∞.  
     Large N limit always (some) classical mechanics Yaffe ‘82



Baryons at large Nc 

Witten ‘79: Baryons have Nc quarks, so nucleon mass MN ~ Nc ΛQCD .

Baryons like “solitons” of large Nc limit ( ~ Skyrmion) 

Leading correction to baryon mass:

Appears ~ g4 Nc4 ~ λ2 Nc2 ?

No, iteration of average potential,
mass still ~ Nc .

g2
× Nc × Nc ∼ λNc



Baryons are not free at Nc = ∞ 

Baryons interact strongly.  Two baryon scattering ~ Nc :

g2
× Nc × Nc ∼ λNc

Scattering of three, four... baryons also ~ Nc 

Mesons also interact strongly with baryons, ~ Nc0 ~ 1

g2
× Nc ∼ λ



Skyrmions and Nc = ∞ baryons

L = f2

π tr|Vµ|
2 + κ tr[Vµ, Vν ]2 , Vµ = U†∂µU , U = eiπ/fπ

Witten ‘83; Adkins, Nappi, Witten ‘83: Skyrme model for baryons

Baryon soliton of pion Lagrangian: fπ ~ Nc1/2 ,  κ ~ Nc , mass  ~ fπ2 ~ κ ~ Nc .

Single baryon: at r = ∞, πa = 0, U = 1.  At r = 0,  πa =  π ra/r . 
Baryon number topological: Wess & Zumino ’71; Witten ’83.

Huge degeneracy of baryons: multiplets of isospin and spin, I = J: 1/2 ... Nc/2.
     Obvious as collective coordinates of soliton, coupling spin & isospin

Dashen & Manohar ’93, Dashen, Jenkins, & Manohar ‘94:  
     Baryon-meson coupling ~ Nc1/2, 
     Cancellations from extended SU(2 Nf) symmetry. 



Towards the phase diagram at Nc = ∞
As example, consider gluon polarization tensor at zero momentum.
     (at leading order, ~ Debye mass2 , gauge invariant)

Πµµ(0) = g2

((

Nc +
Nf

2

)

T 2

3
+

Nfµ2

2π2

)

= λ
T 2

3
, Nc = ∞

For μ ~ Nc0 ~ 1, at Nc = ∞ the gluons are blind to quarks.

When μ ~ 1, deconfining transition temperature Td(μ) = Td(0)

Chemical potential only matters when larger than mass:
     μBaryon > MBaryon.  Define mquark = MBaryon/Nc ; so μ > mquark .

“Box” for T < Tc ; μ < mquark: confined phase baryon free, since their mass ~ Nc

Thermal excitation ~ exp(-mB/T) ~ exp(-Nc) = 0 at large Nc.
     So hadronic phase in “box” = mesons & glueballs only, no baryons.



Phase diagram at Nc = ∞, I
At least three phases.  At large Nc, can use pressure, P, as order parameter.
Hadronic (confined): P ~ 1.  Deconfined, P ~ Nc2.  Thorn ’81; RDP ’84...

P ~ Nc: quarks or baryons = “quark-yonic”.  Chiral symmetry restoration?
     N.B.: mass threshold at mq neglects (possible) nuclear binding, Son.

T↑

Td

μ→mq

Hadronic Quarkyonic

Deconfined
↓1st order



Nuclear matter at large Nc 

μBaryon = √kF2 + M2 , kF = Fermi momentum of baryons. 
Pressure of ideal baryons density times energy of non-relativistic baryons:

Pideal baryons ∼ n(kF )
k2

F

M
∼

1

Nc

k5
F

ΛQCD

δPresonances ∼

1

M

k8
F

Λ3
QCD

∼

1

Nc

k8
F

Λ4
QCD

δPtwo body int.′s ∼ Nc
n(kF )2

Λ2
QCD

∼ Nc
k6

F

Λ2
QCD

This is small, ~ 1/Nc .  The pressure of the I = J tower of resonances is as small:

Two body interactions are huge, ~ Nc in pressure.    

At large Nc , nuclear matter is dominated by potential, not kinetic terms!
Two body, three body... interactions all contribute ~ Nc .



µ − mq =
µB − M

Nc

=
k2

F

2MNc

∼

1

N2
c

k2

F

kF ∼

1

N2
c

ΛQCD

Window of nuclear matter
Balancing Pideal baryons ~ Ptwo body int.’s, interactions important very quickly,

For such momenta, only two body interactions contribute.

By the time kF ~ 1, all interactions terms contribute ~ Nc to the pressure.  

But this is very close to the mass threshold,

Hence “ordinary” nuclear matter is only in a very narrow window.

One quickly goes to a phase with pressure P ~ Nc.

     So are they baryons, or quarks?



Perturbative pressure
At high density, μ >> ΛQCD,  compute P(μ) in QCD perturbation theory.  

To ~ g4, Freedman & McLerran (’77)4; Ipp, Kajantie, Rebhan, & Vuorinen ‘06

Ppert.(µ) ∼ NcNf µ4 F0(g
2(µ/ΛQCD), Nf )

At μ ≠ 0, only diagrams with at least one quark loop contribute.  Still...

For μ >> ΛQCD, but μ ~ Nc0 ~ 1, calculation reliable.  

Compute P(μ) to ~ g6 , g8... ?  No “magnetic mass” at μ ≠ 0, well defined ∀ (g2)n.



“Quarkyonic” phase at large Nc

As gluons blind to quarks at large Nc, for μ ~ Nc0 ~ 1, confined phase for T <  Td

This includes μ >> ΛQCD!  Central puzzle.  We suggest:

To left: Fermi sea.

Deep in the Fermi sea, k << μ , 
      looks like quarks.

But: within ~ ΛQCD of the Fermi surface,
     confinement => baryons 

We term combination “quark-yonic”

ΛQCD 

μ 

OK for μ >> ΛQCD.  When μ ~ ΛQCD, baryonic “skin” entire Fermi sea.

But what about chiral symmetry breaking?



Skyrmion crystals

At low density, chiral symmetry broken
by Skyrme crystal, as in vacuum.
Chiral symmetry restored at
nonzero density: < U > = 0 in each cell.  

Goldhaber & Manton ’87: due to “half” Skyrmion symmetry in each cell.
Forkel, Jackson et al, ’89: excitations are chirally symmetric.

Easiest to understand with “spherical” crystal, KPR ’84, Manton ’87.
Take same boundary conditions as a single baryon, but for sphere of radius R:
     At r = R: πa = 0.  At r = 0,  πa =  π ra/r .  Density one baryon/(4 π R3/3).

At high density, term ~ κ dominates, so energy density ~ baryon density4/3.
     Like perturbative QCD!  Accident of simplest Skyrme Lagrangian.

Skyrmion crystal: soliton periodic in space.
Kutschera, Pethick & Ravenhall (KPR) ’84;  Klebanov ’85 + ... 
Lee, Park, Min, Rho & Vento, hep-ph/0302019 =>



Schwinger-Dyson equations at large Nc: 1+1 dim.’s

‘t Hooft ‘74: as gluons blind to quarks at large Nc, S-D eqs. simple for quark:
     Gluon propagator, and gluon quark anti-quark vertex unchanged.

To leading order in 1/Nc, only quark propagator changes:

‘t Hooft ‘74: in 1+1 dimensions, single gluon exchange generates linear potential,

g2

2D

∫
dk

eikr

k2
∼ g2

2D r

In vacuum, Regge trajectories of confined mesons.  Baryons?

Solution at μ ≠ 0?  Should be possible, not yet solved.

Thies et al ’00...06: Gross-Neveu model has crystalline structure at μ ≠ 0



Schwinger-Dyson eqs. at large Nc: 3+1 dim.’s

Glozman & Wagenbrunn 0709.3080: in 3+1 dimensions,
     confining gluon propagator, 1/(k2)2 as k2 -> 0:

g2

∫

d3k
eikr

k2

(

1 +
σ

k2

)

∼ g2 σ r , r → ∞
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μ →

 ↑ 〈ψψ〉

Involves mass parameter, σ.  At μ = 0, 

Take S-D eq. at large Nc, 
so confinement unchanged by μ ≠ 0.  

Find chiral symmetry restoration at

Hence: in two models at μ ≠ 0, 
chiral symmetry restoration in confined phase

〈ψψ〉 = (.23
√

σ)3

µχ = .11
√

σ



Asymptotically large μ

For μ ~ (Nc)p, p > 0, gluons no longer blind to quarks.  Perturbatively,

Ppert.(µ, T ) ∼ NcNf µ4 F0 , NcNf µ2 T 2 F1 , N2
c T 4 F2 .

First two terms from quarks & gluons, last only from gluons.  Two regimes:
          
μ ~ Nc1/4 ΛQCD : Nc μ4 F0 ~ Nc2 F2 ~ Nc2 >> Nc μ2 F1 ~ Nc3/2.
        Gluons & quarks contribute equally to pressure; quark cont. T-independent.

μ ~ Nc1/2  ΛQCD : New regime: m2Debye ~ g2 μ2 ~ 1, so gluons feel quarks.

     Nc μ4 F0 ~ Nc3 >> Nc μ2 F1 , Nc2 F2 ~ Nc2 .
     Quarks dominate pressure, T-independent.

Eventually, first order deconfining transition can either: 
end in a critical point, or bend over to T = 0: ?



T↑

Td

μ→mq

↓1st order

Phase diagram at Nc = ∞, II

χ sym. 
broken

Chiral transition
Quarkyonic

Deconfined

Hadronic
“Box”

Chirally symmetric

We suggest: quarkyonic phase includes chiral trans.  Order by usual arguments.

Mocsy, Sannino & Tuominen ‘03: splitting of transitions in effective models

But: quarkyonic phase confined.  Chirally symmetric baryons?



Chirally symmetric baryons

B. Lee, ‘72; DeTar & Kunihiro ’89; Jido, Oka & Hosaka, hep-ph/0110005; 
Zschiesche et al nucl-th/0608044.  Consider two baryon multiplets.  One usual 
nucleon, other parity partner, transforming opposite under chiral transformations:

ψL,R → UL,R ψL,R ; χL,R → UR,L χL,R

With two multiplets, can form chirally symmetric (parity even) mass term: 

ψL χR − ψR χL + χR ψL − χL ψR

g1 ψL Φ ψR + g2 χR Φ χL

Also: usual sigma field,                           , couplings for linear sigma model:Φ → UL Φ U
†
R

Generalized model at μ ≠ 0: D. Fernandez-Fraile & RDP ’07...



Anomalies?

‘t Hooft, ‘80: anomalies rule out massive, parity doubled baryons in vacuum:
    No massless modes to saturate anomaly condition

Itoyama & Mueller’83; RDP, Trueman & Tytgat ‘97: 
At T ≠ 0 , μ ≠ 0 , anomaly constraints far less restrictive (many more amplitudes)
   E.g.: anomaly unchanged at T ≠ 0 , μ ≠ 0, but Sutherland-Veltman theorem fails
 
Must do: show parity doubled baryons consistent with anomalies at μ ≠ 0.  
    At T ≠ 0 , μ = 0 , no massless modes.  Anomalies probably rule out model(s).
    But at μ ≠ 0 , always have massless modes near the Fermi surface.

Casher ‘79: heuristically, confinement => chiral sym. breaking in vacuum
    Especially at large Nc, carries over to T ≠ 0 , μ = 0 .  
    Does not apply at μ ≠ 0: baryons strongly interacting at large Nc.

Banks & Casher ’80: chiral sym. breaking from eigenvalue density at origin.
Splittorff & Verbaarschot ‘07: at μ ≠ 0, eigenvalues spread in complex plane.
     (Another) heuristic argument for chiral sym. restoration in quarkyonic phase.



Hadronic

T↑

μB→MN

Deconfined

Quarkyonic

?
χ sym. 
broken Chirally symmetric

Chiral trans.

XCritical end-point Deconfining trans.

Guess for phase diagram in QCD
Pure guesswork: deconfining & chiral transitions split apart at critical end-point?
Line for deconfining transition first order to the right of the critical end-point?
Critical end-point for deconfinement, or continues down to T=0?


